Addition and Double Angle Formulae

A LevelAQAEdexcelOCR

Addition and Double Angle Formulae

We’re now about to take a look at some formulae which describe angle addition.

If you don’t know your key trig values already, now would be the time to learn!

Make sure you are happy with the following topics before continuing.

A LevelAQAEdexcelOCR

Finding Expressions for Addition Formulae

Here’s three new formulae in \textcolor{blue}{\sin}, \textcolor{limegreen}{\cos} and \textcolor{red}{\tan}:

\textcolor{blue}{\sin} (\textcolor{purple}{A} ± \textcolor{orange}{B}) = \textcolor{blue}{\sin} \textcolor{purple}{A} \textcolor{limegreen}{\cos} \textcolor{orange}{B} ± \textcolor{blue}{\sin} \textcolor{orange}{B} \textcolor{limegreen}{\cos} \textcolor{purple}{A}

\textcolor{limegreen}{\cos} (\textcolor{purple}{A} ± \textcolor{orange}{B}) = \textcolor{limegreen}{\cos} \textcolor{purple}{A} \textcolor{limegreen}{\cos} \textcolor{orange}{B} \mp \textcolor{blue}{\sin} \textcolor{purple}{A} \textcolor{blue}{\sin} \textcolor{orange}{B}

\textcolor{red}{\tan} (\textcolor{purple}{A} ± \textcolor{orange}{B}) = \dfrac{\textcolor{red}{\tan} \textcolor{purple}{A} ± \textcolor{red}{\tan} \textcolor{orange}{B}}{1 \mp \textcolor{red}{\tan} \textcolor{purple}{A} \textcolor{red}{\tan} \textcolor{orange}{B}}

A LevelAQAEdexcelOCR

Note:

You might have noticed the “minus-plus” symbols above (\mp). This is no mistake, and it is not the same as “plus-minus, \pm“. The important thing to remember with this notation is that whichever symbol is chosen (top or bottom), must be used on the other side of the equation.

So, for example,

\textcolor{limegreen}{\cos} (\textcolor{purple}{A} + \textcolor{orange}{B}) = \textcolor{limegreen}{\cos} \textcolor{purple}{A} \textcolor{limegreen}{\cos} \textcolor{orange}{B} - \textcolor{blue}{\sin} \textcolor{purple}{A} \textcolor{blue}{\sin} \textcolor{orange}{B}

and

\textcolor{limegreen}{\cos} (\textcolor{purple}{A} - \textcolor{orange}{B}) = \textcolor{limegreen}{\cos} \textcolor{purple}{A} \textcolor{limegreen}{\cos} \textcolor{orange}{B} + \textcolor{blue}{\sin} \textcolor{purple}{A} \textcolor{blue}{\sin} \textcolor{orange}{B}

Double Angle Formulae

We can extend our addition formulae to two equal angles, also.

So, we have

\textcolor{blue}{\sin (2A)} = 2\textcolor{blue}{\sin A} \textcolor{limegreen}{\cos A}

\begin{aligned}\textcolor{limegreen}{\cos (2A)} &= \textcolor{limegreen}{\cos ^2 A} - \textcolor{blue}{\sin ^2 A}\\[1.2em]&=2\textcolor{limegreen}{\cos^2 A}-1\\[1.2em]&=1-2\textcolor{blue}{\sin^2 A}\end{aligned}

\textcolor{red}{\tan (2A)} = \dfrac{2\textcolor{red}{\tan A}}{1 - \textcolor{red}{\tan ^2 A}}

No worries if you forget these, you can just derive them from the addition formulae by setting B = A.

A LevelAQAEdexcelOCR
A LevelAQAEdexcelOCR

Example: Finding Exact Values

Find the exact value of \textcolor{blue}{\sin} 75°, in the form \dfrac{1}{a\sqrt{b}}(c + \sqrt{d}).

[3 marks]

\textcolor{blue}{\sin} 75° = \textcolor{blue}{\sin} (30° + 45°)

= \textcolor{blue}{\sin} 30° \textcolor{limegreen}{\cos} 45° + \textcolor{blue}{\sin} 45° \textcolor{limegreen}{\cos} 30°

= \left( \dfrac{1}{2} \times \dfrac{1}{\sqrt{2}} \right) + \left( \dfrac{1}{\sqrt{2}} \times \dfrac{\sqrt{3}}{2} \right)

= \dfrac{1}{2\sqrt{2}} + \dfrac{\sqrt{3}}{2\sqrt{2}} = \dfrac{1}{2\sqrt{2}}(1 + \sqrt{3})

A LevelAQAEdexcelOCR

Addition and Double Angle Formulae Example Questions

Question 1: Find the exact value of \cos 165°.

[3 marks]

A Level AQAEdexcelOCR

\cos 165° = \cos (210° - 45°)

 

= \cos 210° \cos 45° + \sin 210° \sin 45°

 

= \left( \dfrac{-\sqrt{3}}{2} \times \dfrac{1}{\sqrt{2}}\right) + \left( \dfrac{-1}{2} \times \dfrac{1}{\sqrt{2}}\right)

 

= \dfrac{-\sqrt{3} - 1}{2\sqrt{2}}

MME Premium Laptop

Save your answers with

MME Premium

Gold Standard Education

Question 2: Given that \tan 75° = 2 + \sqrt{3}, find the exact value of \tan 150°.

[2 marks]

A Level AQAEdexcelOCR

\tan 150° = \dfrac{2(2 + \sqrt{3})}{1 - (2 + \sqrt{3})^2}

 

= \dfrac{4 + 2\sqrt{3}}{-6 - 4\sqrt{3}} = \dfrac{2 + \sqrt{3}}{-3 - 2\sqrt{3}}

 

= \dfrac{(2 + \sqrt{3})(-3 + 2\sqrt{3})}{(-3 - 2\sqrt{3})(-3 + 2\sqrt{3})}

 

= \dfrac{-6 - 3\sqrt{3} + 4\sqrt{3} + 6}{9 - 12}

 

= \dfrac{\sqrt{3}}{-3} = \dfrac{-1}{\sqrt{3}}

MME Premium Laptop

Save your answers with

MME Premium

Gold Standard Education

Question 3: Using angle addition formulae, prove that \sin \left( x + \dfrac{\pi}{2}\right) = \cos x.

[2 marks]

A Level AQAEdexcelOCR

\sin \left( x + \dfrac{\pi}{2}\right) = \sin x \cos \dfrac{\pi}{2} + \sin \dfrac{\pi}{2} \cos x

 

= (\sin x \times 0) + (\cos x \times 1)

 

= \cos x

MME Premium Laptop

Save your answers with

MME Premium

Gold Standard Education

Additional Resources

Site Logo

Exam Tips Cheat Sheet

A Level
Site Logo

Formula Booklet

A Level

Specification Points Covered

E6 – Understand and use double angle formulae; use of formulae for \sin{(A\pm B)}, \cos{(A\pm B)} and \tan{(A\pm B)}; understand geometrical proofs of these formulae
Understand and use expressions for a\cos{\theta}+b\sin{\theta} in the equivalent forms of r\cos{(\theta \pm \alpha)} or r\sin{(\theta \pm \alpha)}

Addition and Double Angle Formulae Worksheet and Example Questions

Site Logo

Double Angle Formulae

A Level

Related Topics

Site Logo

Basic Trig Identities

A Level