Parametric Integrals

A LevelAQAEdexcelOCR

Parametric Integrals

When dealing with parametric equations, integrals become more complicated. We cannot just do \int y \, dx when we don’t have y written in terms of x. Instead, we must use the chain rule to get an integral in terms of the parameter. Then, if it is a definite integral, we must convert the limits to fit the new integration.

Make sure you are happy with the following topics before continuing.

A LevelAQAEdexcelOCR

The Chain Rule

Recall: The Chain Rule.

\dfrac{dy}{dx}=\dfrac{dy}{dz}\dfrac{dz}{dx}

If we have parametric equations and y isn’t written in terms of x, but instead it is written in terms of t say, then we can use the chain rule to show that dx=\dfrac{dx}{dt} \, dt for a parameter t, and since we have x in terms of t we can get \dfrac{dx}{dt} in terms of t, and we already have y in terms of t, so our integral can be written as:

{\LARGE \int} y \, dx={\LARGE \int} y \, \dfrac{dx}{dt} \, dt

A LevelAQAEdexcelOCR

Limit Conversion

If we have a definite integral \int^{b}_{a}y \, dx, then we cannot just take our limits a and b and put them on our new integral in terms of t, because they are limits with respect to x.

Instead, we need to convert them.

This means that the lower limit on the integral in terms of t is the t value that gives x=a, and the upper limit on the integral in terms of t is the t value that gives x=b.

With these converted limits we can find the value of the definite integral.

A LevelAQAEdexcelOCR
A LevelAQAEdexcelOCR

Example 1: Using the Chain Rule

A parametric equation is x=3t+4 and y=t^{2}. Find \int y \, dx in terms of t.

[2 marks]

\int y \, dx={\LARGE \int} y\dfrac{dx}{dt} \, dt

 

x=3t+4

 

\dfrac{dx}{dt}=3

 

y=t^{2}

 

\int y \, dx=\int 3t^{2} \, dt

 

\int y \, dx=t^{3}+c

 

A LevelAQAEdexcelOCR

Example 2: Definite Integrals

A parametric curve is defined by y=t^{3}+3t, x=t^{2}+4t+4, for t>-3. Find \int^{4}_{0}y \, dx.

[3 marks]

First convert limits.

x=t^{2}+4t+4

First limit: x=0

t^{2}+4t+4=0

(t+2)^{2}=0

t=-2

Second limit: x=4

t^{2}+4t+4=4

t^{2}+4t=0

t(t+4)=0

t=0 or t=-4

t=-4 not in range

t=0

 

\int^{4}_{0} y \, dx={\LARGE\int}^{0}_{-2} \, y\dfrac{dx}{dt} \, dt

x=t^{2}+4t+4

\dfrac{dx}{dt}=2t+4

y=t^{3}+3t

\begin{aligned}\int^{4}_{0} y \, dx&=\int^{0}_{-2}(t^{3}+3t)(2t+4) \, dt\\[1.2em]&=\int^{0}_{-2}\left( 2t^{4}+4t^{3}+6t^{2}+12t\right) dt\\[1.2em]&=\left[\dfrac{2}{5}t^{5}+t^{4}+2t^{3}+6t^{2}\right]^{0}_{-2}\\[1.2em]&=\left( \dfrac{2}{5}\times0^{5}\right) +0^{4}+\left( 2\times0^{3}\right) +\left( 6\times0^{2}\right)-\left( \dfrac{2}{5}\times(-2)^{5}\right) -(-2)^{4} - 2(- 2)^{3} - 6( -2)^{2} \\[1.2em]&=\left( \dfrac{2}{5}\times32\right) -16+\left( 2\times8\right) -\left( 6\times4\right) \\[1.2em]&=\dfrac{64}{5}-16+16-24\\[1.2em]&=-\dfrac{56}{5}\end{aligned}

A LevelAQAEdexcelOCR

Parametric Integrals Example Questions

Question 1: A curve has parametric equation x=t^{2}+2, y=t^{3}+4t^{2}+4t+3. Show that \int y \, dx=\int\left( 2t^{4}+8t^{3}+8t^{2}+6t\right) dt

[2 marks]

A Level AQAEdexcelOCR

\int y \, dx={\LARGE \int} y\dfrac{dx}{dt}dt

x=t^{2}+2

\dfrac{dx}{dt}=2t

y=t^{3}+4t^{2}+4t+3

\begin{aligned}\int y \, dx&=\int\left( 2t(t^{3}+4t^{2}+4t+3)\right) \, dt \\[1.2em]&=\int\left( 2t^{4}+8t^{3}+8t^{2}+6t\right) \, dt \end{aligned}

MME Premium Laptop

Save your answers with

MME Premium

Gold Standard Education

Question 2: Find \int y \, dx in terms of t, where y=t^{-\frac{1}{2}} and x=4t^{\frac{5}{9}}

[2 marks]

A Level AQAEdexcelOCR

\int y \, dx={\LARGE \int} y\dfrac{dx}{dt}dt

x=4t^{\frac{5}{9}}

\dfrac{dx}{dt}=\dfrac{20}{9}t^{-\frac{4}{9}}

y=t^{-\frac{1}{2}}

\begin{aligned}\int ydx&=\int \left( t^{-\frac{1}{2}}\times\dfrac{20}{9}t^{-\frac{4}{9}}\right) dt\\[1.2em]&=\int \dfrac{20}{9}t^{-\frac{17}{18}}dt\\[1.2em]&=\left( \dfrac{20}{9}\div\dfrac{1}{18}\right) t^{\frac{1}{18}}+c\\[1.2em]&=40t^{\frac{1}{18}}+c\end{aligned}

MME Premium Laptop

Save your answers with

MME Premium

Gold Standard Education

Question 3: A parametric curve is defined by x=2t+4, y=t+6. Find \int^{6}_{0}y \, dx

[3 marks]

A Level AQAEdexcelOCR

First find the new limits.

Upper limit x=6

2t+4=6

2t=2

t=1

Lower limit x=0

2t+4=0

2t=-4

t=-2

 

Thus:

\int^{6}_{0}y \, dx={\LARGE \int}^{1}_{-2}y\dfrac{dx}{dt} \, dt

x=2t+4

\dfrac{dx}{dt}=2

y=t+6

\begin{aligned}\int^{6}_{0}y \, dx&=\int^{1}_{-2}2(t+6) \, dt\\[1.2em]&=\int^{1}_{-2}\left( 2t+12\right) \, dt\\[1.2em]&=[t^{2}+12t]^{1}_{-2}\\[1.2em]&=1^{2}+\left( 12\times1\right) -(-2)^{2}-\left( 12\times(-2)\right) \\[1.2em]&=1+12-4+24\\[1.2em]&=33\end{aligned}

MME Premium Laptop

Save your answers with

MME Premium

Gold Standard Education

Additional Resources

Site Logo

Exam Tips Cheat Sheet

A Level
Site Logo

Formula Booklet

A Level

Specification Points Covered

C3 – Understand and use the parametric equations of curves and conversion between Cartesian and parametric forms
H3 – Evaluate definite integrals; use a definite integral to find the area under a curve and the area between two curves

Related Topics

Site Logo

Parametric Equations

A Level