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Answer all the questions.
1 Three sequences, a,, b, and ¢, are defined for n > 1 by the following recurrence relations.
(a@,,—2)2—a,)=3witha =3

b ., =—3b +3withb =15

n+l

c
n __ . _
Cott ™ = 1 with ¢ =25

The output from a spreadsheet which presents the first 10 terms of a , b, and ¢, , is shown below.

C D
n a b, ¢,
3 1.5 2.5
-1 2.25 7.25
3 1.875| 27.28125
-1| 2.0625| 249.0889
3| 1.96875| 15512.32
2.01563 [48126390
3| 1.99219 | 3.86E+14
-1 2.00391 | 2.13E+28
3| 1.99805 | 5.66E+55
-1 2.00098 | 3.6E+110
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Without attempting to solve any recurrence relations, describe the apparent behaviour, including
asn — oo, of

*c (7]

© OCR 2022 Y435/01 Jun22



10 12 -8
2 The matrix Ais givenby A=|—1 2 4|
3 6 2

(a) In this question you must show detailed reasoning.

Show that the characteristic equation of A is —A* + 14A% — 561+ 64 = 0. [3]
(b) Use the Cayley-Hamilton theorem to determine A~ [5]
A matrix E and a diagonal matrix D are such that A = EDE™'. The elements in the diagonal of D
increase from top left to bottom right.

(¢) Determine the matrix D. [4]

3 Asequence is defined by the recurrence relation 57 | —47, = 3n* +28n+6, for n > 0, with
t,=17.
0

(a) Find an expression for 7 in terms of n. [6]

4
Another sequence is defined by v = —, for n > 1, where m is a constant.
n

(b) In each of the following cases determine lim v . if it exists, or show that the sequence is

divergent.

(i m=3 [1]
(i) m=2 1]
(iii) m=1 1]
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4 A binary operation, o, is defined on a set of numbers, 4, in the following way.
aob=ka—k,b+k,, fora,be A,

where k,, k, and k, are constants (which are not necessarily in 4) and the operations addition,

subtraction and multiplication of numbers have their usual notation and meaning.

You are initially given the following information about o and A.
e 4=R
e 000=2

e An identity element, e, exists for o in 4

(a) Showthataob=a+ b+ 2. [5]
(b) State the value of e. [1]
(¢) Explain whether o is commutative over 4. [1]
(d) Determine whether or not (4, ©) is a group. [6]

(e) Explain whether your answer to part (d) would change in each of the following cases, giving
details of any change.

(i) A=7 ]
() A=02m:meZ} ]
(i) A={n:neZ,n>-2} 1]
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5 Asurface Sis defined by z = f(x, y), where f(x, y) = ye_(x2+2x+2)y.
. ., of
(a) () Find 5. 1]
(i) Show that g—i = (B 2y 2y — 1) R, [1]
(iii) Determine the coordinates of any stationary points on S. (4]

Fig. 5.1 shows the graph of z = e™ and Fig. 5.2 shows the contour of S defined by z = 0.25.

-

z
A

1 N\ 2

N v}

X X
-2 -1 0 1 2 -2 -1 0
Fig. 5.1 Fig. 5.2
(b) Specify a sequence of transformations which transforms the graph of z = ¢ onto the graph
of the section defined by z = f(x, 1). [2]
(¢) Hence, or otherwise, sketch the section defined by z = f(x, 1). [1]

(d) Using Fig. 5.2 and your answer to part (¢), classify any stationary points on S, justifying your
answer. [2]

You are given that P is a point on S where z = 0.

(e) Find, in vector form, the equation of the tangent plane to S at P. (4]
The tangent plane found in part (e) intersects S in a straight line, L.

(f) Write down, in vector form, the equation of L. [1]

END OF QUESTION PAPER
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