

# Monday 16 May 2022 – Afternoon

## AS Level Further Mathematics B (MEI)

### Y410/01 Core Pure

Time allowed: 1 hour 15 minutes

**You must have:**

- the Printed Answer Booklet
- the Formulae Booklet for Further Mathematics B (MEI)
- a scientific or graphical calculator

**INSTRUCTIONS**

- Use black ink. You can use an HB pencil, but only for graphs and diagrams.
- Write your answer to each question in the space provided in the **Printed Answer Booklet**. If you need extra space use the lined pages at the end of the Printed Answer Booklet. The question numbers must be clearly shown.
- Fill in the boxes on the front of the Printed Answer Booklet.
- Answer **all** the questions.
- Where appropriate, your answer should be supported with working. Marks might be given for using a correct method, even if your answer is wrong.
- Give your final answers to a degree of accuracy that is appropriate to the context.
- Do **not** send this Question Paper for marking. Keep it in the centre or recycle it.

**INFORMATION**

- The total mark for this paper is **60**.
- The marks for each question are shown in brackets [ ].
- This document has **4** pages.

**ADVICE**

- Read each question carefully before you start your answer.

Answer **all** the questions.

1 (a) (i) Write the following simultaneous equations as a matrix equation.

$$\begin{aligned}x + y + 2z &= 7 \\2x - 4y - 3z &= -5 \\-5x + 3y + 5z &= 13\end{aligned}$$

[1]

(ii) Hence solve the equations.

[2]

(b) Determine the set of values of the constant  $k$  for which the matrix equation

$$\begin{pmatrix} k+1 & 1 \\ 2 & k \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 23 \\ -17 \end{pmatrix}$$

has a unique solution.

[3]

2 (a) Show that the vector  $\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}$  is parallel to the plane  $2x + y - 3z = 10$ .

[3]

(b) Determine the acute angle between the planes  $2x + y - 3z = 10$  and  $x - y - 3z = 3$ .

[4]

3 The complex number  $z$  satisfies the equation  $5(z - i) = (-1 + 2i)z^*$ .

Determine  $z$ , giving your answer in the form  $a + bi$ , where  $a$  and  $b$  are real.

[5]

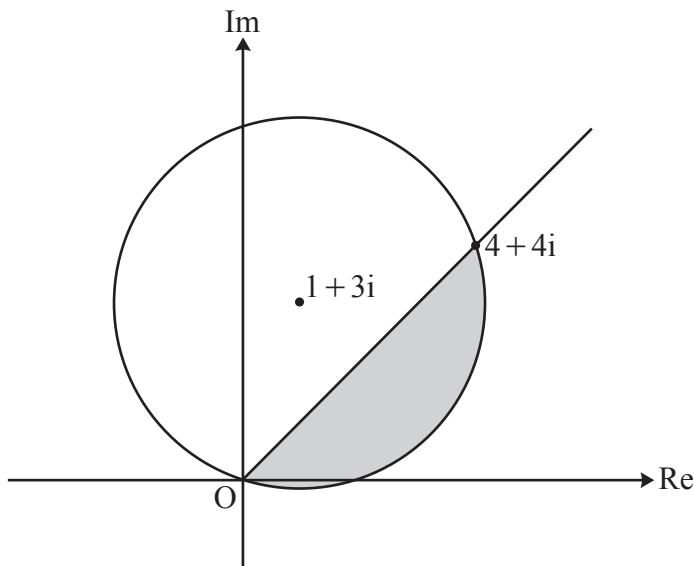
4 **In this question you must show detailed reasoning.**

The equation  $z^3 + 2z^2 + kz + 3 = 0$ , where  $k$  is a constant, has roots  $\alpha$ ,  $\frac{1}{\alpha}$  and  $\beta$ .

Determine the roots in exact form.

[6]

5 An Argand diagram is shown below. The circle has centre at the point representing  $1 + 3i$ , and the half line intersects the circle at the origin and at the point representing  $4 + 4i$ .



State the **two** conditions that define the set of complex numbers represented by points in the shaded segment, including its boundaries.

[5]

6 (a) Using standard summation formulae, show that  $\sum_{r=1}^n r(r+2) = \frac{1}{6}n(n+1)(2n+7)$ . [4]

(b) Use induction to prove the result in part (a). [6]

7 On an Argand diagram, the point A represents the complex number  $z$  with modulus 2 and argument  $\frac{1}{3}\pi$ . The point B represents  $\frac{1}{z}$ .

(a) Sketch an Argand diagram showing the origin O and the points A and B. [2]

(b) The point C is such that OACB is a parallelogram. C represents the complex number  $w$ . Determine each of the following.

- The modulus of  $w$ , giving your answer in exact form.
- The argument of  $w$ , giving your answer correct to 3 significant figures. [7]

8 A transformation T of the plane has matrix  $\mathbf{M}$ , where  $\mathbf{M} = \begin{pmatrix} \cos \theta & 2 \cos \theta - \sin \theta \\ \sin \theta & 2 \sin \theta + \cos \theta \end{pmatrix}$ .

(a) Show that T leaves areas unchanged for all values of  $\theta$ . [2]

(b) Find the value of  $\theta$ , where  $0 < \theta < \frac{1}{2}\pi$ , for which the  $y$ -axis is an invariant line of T. [4]

The matrix  $\mathbf{N}$  is  $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ .

(c) (i) Find  $\mathbf{M}\mathbf{N}^{-1}$ . [2]

(ii) Hence describe fully a sequence of two transformations of the plane that is equivalent to T. [4]

**END OF QUESTION PAPER**