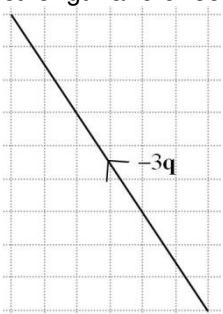

GCSE MARKING SCHEME

AUTUMN 2017

**GCSE
MATHEMATICS - COMPONENT 1 (HIGHER)
C300UA0-1**


INTRODUCTION

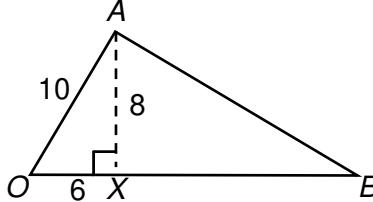
This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

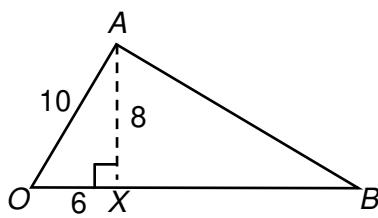
It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

EDUQAS GCSE (9-1) Mathematics Autumn 2017 Component 1: Higher Tier	Mark	Comment
1(a) $2^3 \times 3^2 \times 5$	B3	B2 for $2 \times 2 \times 2 \times 3 \times 3 \times 5$ or B1 for an attempt at the factors (list, repeated division or factor tree) with two correct factors seen before the first error
1(b) 45	B2	FT the HCF of $3^2 \times 5 \times 7$ and 'their $2^3 \times 3^2 \times 5$ ' B1 for $3^2 \times 5$ or for any common factor of 315 and 360 which is greater than 1
1(c)(i) 0.00054	B1	
1(c)(ii) 8×10^4	B2	B1 for 0.8×10^5 seen or for a final answer of 80 000
	(8)	
*2.(a)(i) Valid criticism about the instruction or response boxes. e.g. 'You may want to tick more than one box.' or 'You may have used it to do something else like go on the internet.' or 'You may not have done any of these things.'	E1	Do not allow e.g. 'They may not have a mobile phone.'
*2.(a)(ii) Valid criticism about the vagueness of the times used e.g. 'It does not say what a lot means.'	E1	
*2.(b)(i) Valid comment. e.g. 'Not reliable as only 5 students.' or 'Not very reliable, she needs to ask more people'	E1	
*2.(b)(ii) SIM only is better because e.g. 'the bills are less varied (as the range is £3 compared to £65 for Pay-as-you-go.)' or 'SIM only bills are all about the same' or 'Pay-as-you-go bills are more spread out'. Pay-as-you-go is better because e.g. 'the average monthly cost is less (as the mean is £12.75 compared to £16.25 for SIM only.' or 'Most Pay-as-you-go bills will be less than £12.75' or 'The mean Pay-as-you-go bill is lower than the lowest SIM only bill.'	E1	Do not allow e.g. 'it has the cheaper highest bill.'
	E1	Do not allow e.g. 'it has the cheaper lowest bill.'
	(5)	

*3.(a) $\begin{pmatrix} 9 \\ 9.5 \end{pmatrix}$	B2	B1 for each element or for $2\mathbf{p} = \begin{pmatrix} 10 \\ 8 \end{pmatrix}$ or equivalent seen or for $\begin{pmatrix} 9 \\ 9.5 \end{pmatrix}$ or for $\frac{9}{9.5}$ or for $\frac{9}{9.5}$
*3.(b) Line of correct length and direction: 	B2	B1 for correct length but direction omitted or incorrect or for correct direction but incorrect length
	(4)	
*4. Correct construction with arcs	B2	B1 for correct arcs Tolerance $\pm 2^\circ$
	(2)	
*5.(a) $x^2 - 3x - 10$	B2	B1 for $x^2 - 3x + \dots$ or for any three correct terms in $x^2 + 2x - 5x - 10$
*5.(b) $18a$	B2	Accept $18 a^1$ for 2 marks. B1 for $k \times a^1$ or equivalent
	(4)	
*6.(a)(i) y is inversely proportional to x indicated	B1	
*6.(a)(ii) $(x =) 0.25$ or equivalent	B2	B1 for $100 = \frac{25}{x}$ seen Do not accept $y = 0.25$ or equivalent
*6(b) $\frac{4}{0.8}$ or equivalent 5 (m/s)	M1 A1	Allow e.g. '1 metre every 0.2 seconds.'
	(5)	
*7(a)(i) 14π	B1	allow 43.96
*7(a)(ii) 4	B1	


<p>*7(b) (diameter =) 6 (cm) 9π or $\pi \times 9$ or equivalent</p>	<p>B1 B2</p>	<p>May be on diagram Mark final answer B1 for $\pi \times 3^2$ or equivalent If no marks award SC1 for an answer of 36π or 144π</p>
<p>(5)</p>		
<p>8. (a) $\left(\frac{16}{5} - \frac{9}{7} =\right) \frac{112}{35} - \frac{45}{35}$ or $2 - \frac{3}{35}$ $\frac{67}{35}$ or $1\frac{32}{35}$</p>	<p>M2 A1</p>	<p>M1 for $\frac{112}{35}$ or $\frac{45}{35}$ or $2 + \frac{7}{35} - \frac{10}{35}$</p>
<p>*8.(b) (a =) 28 (b =) 35 (c =) 55</p>	<p>B3</p>	<p>B1 for each correct value or B2 for 35 and attempting 4×7 and 11×5 or for a set of values in the correct ratio that are not 2-digit e.g. 56, 70, 110 or B1 for a common multiple of 5 and 7 or for two pairs of two-digit numbers in the ratio 4 : 5 AND 7 : 11</p>
<p>*8.(c) $205 \div 5 \times 8$ or equivalent 328 (cm) or equivalent, CAO</p>	<p>M1 A1</p>	<p>Must be a complete method</p>
<p>(8)</p>		


<p>*9.(a)</p> <p>$3 \times \frac{4}{6} \times \frac{10}{5}$ or equivalent, seen or implied</p>	<p>M2</p>	<p>May be in steps or as statements e.g.</p> <table border="1"> <thead> <tr> <th>Workers</th> <th>Tonnes</th> <th>Hours</th> </tr> </thead> <tbody> <tr> <td>6</td> <td>5</td> <td>2</td> </tr> <tr> <td>6</td> <td>10</td> <td>4</td> </tr> </tbody> </table> <p>or</p> <table border="1"> <thead> <tr> <th>Workers</th> <th>Tonnes</th> <th>Hours</th> </tr> </thead> <tbody> <tr> <td>6</td> <td>7.5</td> <td>3</td> </tr> <tr> <td>6</td> <td>10</td> <td>4</td> </tr> </tbody> </table>	Workers	Tonnes	Hours	6	5	2	6	10	4	Workers	Tonnes	Hours	6	7.5	3	6	10	4
Workers	Tonnes	Hours																		
6	5	2																		
6	10	4																		
Workers	Tonnes	Hours																		
6	7.5	3																		
6	10	4																		
<p>M1 for one correct step seen or implied</p> <p>e.g. $3 \times \frac{10}{5}$ or $3 \times \frac{4}{6}$</p> <p>or one correct statement e.g.</p> <table border="1"> <thead> <tr> <th>Workers</th> <th>Tonnes</th> <th>Hours</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>1.25</td> <td>3</td> </tr> <tr> <td>6</td> <td>5</td> <td>2</td> </tr> <tr> <td>6</td> <td>7.5</td> <td>3</td> </tr> <tr> <td>4</td> <td>10</td> <td>6</td> </tr> <tr> <td>8</td> <td>10</td> <td>3</td> </tr> </tbody> </table> <p>or equivalent</p> <p>NB 4 workers 5 tonnes 3 hours is given and does not score on its own</p>	Workers	Tonnes	Hours	1	1.25	3	6	5	2	6	7.5	3	4	10	6	8	10	3		
Workers	Tonnes	Hours																		
1	1.25	3																		
6	5	2																		
6	7.5	3																		
4	10	6																		
8	10	3																		
4 (hours)	A1																			
<p>*9.(b)</p> <p>Valid assumption. e.g. 'The goods are all of the same type.' or 'The vehicles used are the same.' or 'The goods can all be loaded into one vehicle.'</p> <p>Valid impact. e.g. 'If the goods are heavier, they may take longer to load.' or 'The load time would be longer if the vehicle could not take all 10 tonnes at once.'</p>	E1	<p>Allow 'The workers did not need to take any breaks.'</p> <p>Do not allow e.g. 'They can all lift the same weight.'</p>																		
	E1	<p>Allow 'The load time would be longer if they had to take breaks.'</p>																		
	(5)																			
<p>10.(a)</p> <p>No (stated or implied) AND either a correct justification e.g. a comment such as 'He should have reversed the inequality sign in step 3 because he divided by -2' or 'it should be $x < \frac{-7}{-2}$ $x < 3.5$' or showing by substitution an example of a value of $x > 3.5$ is not a solution of the original inequality or showing by substitution an example of a value of $x < 3.5$ is a solution of the original inequality</p>	E2	<p>E1 for No and a partially correct justification. e.g. Stating that step 3 is incorrect. or stating that e.g. $x = 4$ is not a solution (no subst seen) or stating the answer should be $x < 3.5$ or stating that e.g. $x = 2$ is not a solution (no subst seen)</p>																		

10.(b)(i) Correct parabola through $(-2, 0)$ and $(2, 0)$.	B2	B1 for correct shape with intercepts relatively correct but roots not marked or for correct roots seen but shape of curve incorrect. Be generous with symmetry; ignore coordinates of vertex
10.(b)(ii) $-2 < x < 2$ or $x \in (-2, 2)$	B2	Accept $-2 < x$ and $x < 2$ or $-2 < x, x < 2$ or the interval $(-2, 2)$ for 2 marks. B1 for each correct end or for $-2 < x$ or $x < 2$ or for 'their -2 ' $< x <$ 'their 2 ', FT their intercepts from (b)(i) or for $-2 \leq x \leq 2$ or for the correct region on the graph in (b)(i) identified as the solution set (including open circles at each x -intercept)
	(6)	
11.(a)(i) 22	B1	
11.(a)(ii)	B3	B1 for correct median B1 for correct LQ and UQ B1 FT for correct IQR; FT 'their UQ' – 'their LQ' provided one is correct
11.(b)(i) Correct box plot: Whiskers from 8 to 10.4 Box from 8.9 to (9.4 to 9.5) Median at 9.2	B2	FT their values from (a)(ii) B1 FT for 2 out of 3 correct from whiskers, box, median
11.(b)(ii) Litestar A and a correct reason. e.g. 'She should buy tablet A as the median is greater (than tablet B).' or 'She should buy tablet A as the median is 0.3 hours more (than tablet B).' or 'She should buy tablet A as the shortest battery life is $\frac{1}{2}$ hour greater.' or 'Tablet A as the Lower quartile is more than the lower quartile of tablet B.'	E1	FT their values from (a)(ii) or their box plot from (b)(i) Allow 'Every statistic apart from the highest value is greater for Litestar A than for Litestar B.'
	(7)	

<p>12.</p> <p>Sight of 8500 (grams) or 8.5 (kg) AND 10.5 (kg) or 10500 (grams)</p> <p>$\frac{4 \times 10.5 + 20 \times 8.5}{20} \text{ or } \frac{215 - 4 \times 10.5}{4} \text{ or } \frac{215 - 20 \times 8.5}{4}$</p> <p>212 or 8.65 or 11.25</p> <p>212 kg < 215kg or 8.65kg > 8.5kg or 11.25 kg > 10.5kg or equivalent AND Mahima is correct.</p>	<p>B2</p> <p>M1</p> <p>A1</p> <p>E1</p>	<p>If units are given they must be correct. B1 for either</p> <p>FT 'their 8.5 and 10.5' providing all are in the same units, 'their 8.5' > 8.4 and 'their 10.5' > 10</p> <p>CAO</p> <p>Dependent on at least B1 M1 having been previously awarded</p> <p>FT 'their 212' < 215 Comparison with 215 must be seen or implied Allow 'Mahima is wrong' if 'their 212' > 215</p>
<p>(5)</p>		
<p>13.</p> <p>$y(w-2x) = 5+x$</p> <p>$wy - 2xy = 5 + x$</p> <p>$wy - 5 = x + 2xy$ or equivalent</p> <p>$wy - 5 = x(1 + 2y)$</p> <p>$x = \frac{wy - 5}{1 + 2y}$</p>	<p>M1</p> <p>M1</p> <p>M1</p> <p>M1</p> <p>A1</p>	<p>FT until second error. Correctly clears the fraction.</p> <p>Multiplies out.</p> <p>Collects x terms to one side.</p> <p>Factorises</p> <p>Divides Final answer; must be $x = \dots$ not $-x = \dots$</p>
<p>(5)</p>		
<p>14.</p> <p>$(\sqrt[3]{64})^{\frac{6}{3}} = 2^6$ or 2^2</p> <p>$(4^9) = [2^2]^9$ or 2^{18}</p> <p>2^{2-4+18} or equivalent</p> <p>2^{16}</p>	<p>B1</p> <p>B1</p> <p>M1</p> <p>A1</p>	<p>FT 'their 18' and 'their 2' providing both are positive Complete method required.</p> <p>CAO</p>
<p>(4)</p>		<p><u>Alternative method 1:</u> $\sqrt[3]{64} \times 4^9 = 4^{10}$ seen or implied B1 $(4^{10}) = [2^2]^{10}$ or $(2^{-4}) = 4^{-2}$ seen or implied B1 2^{20-4} or 4^{10-2} or equivalent M1 2^{16} A1</p> <p><u>Alternative method 2:</u> $(2^{-4}) = \frac{1}{16}$ seen or implied B1 $\sqrt[3]{64} \times \frac{1}{16} = \frac{1}{4}$ seen or implied B1 4^{9-1} or equivalent M1 2^{16} A1</p>

15.	<table border="1"> <tr> <td></td><td>C</td><td>W</td><td>J</td><td></td></tr> <tr> <td>P</td><td>12</td><td>0</td><td>6</td><td>18</td></tr> <tr> <td>B</td><td>16</td><td>0</td><td>8</td><td>24</td></tr> <tr> <td>K</td><td>0</td><td>5</td><td>3</td><td>8</td></tr> <tr> <td></td><td>28</td><td>5</td><td>17</td><td>50</td></tr> </table>		C	W	J		P	12	0	6	18	B	16	0	8	24	K	0	5	3	8		28	5	17	50	B4	<p>B1 for the given 24, 28, 8, 0 (shaded) correctly placed</p> <p>B1 for the 5's and remaining 0's correctly placed in the water column</p> <p>B1 for 16 and 12 correctly placed or for the 16 and 8 correctly placed</p> <p>B1 for the 18 and 6 correctly placed or for the 17 and 6 correctly placed FT 'their 16' & 'their 12' or 'their 16' & 'their 8', i.e. 18 and 18 – 'their 12' or 18 and 18 – (28 – 'their 16') or 17 and 17 – (8 – 'their 5') – 'their 8' or 17 and 17 – (8 – 'their 5') – (24 – 'their 16')</p> <p>May be probabilities or frequencies</p>
	C	W	J																									
P	12	0	6	18																								
B	16	0	8	24																								
K	0	5	3	8																								
	28	5	17	50																								
$\frac{16+6}{50}$	M2	<p>FT 'their 16' and 'their 6' for M1 or M2</p> <p>M1 for sight of either $\frac{16}{50}$ or $\frac{6}{50}$ or equivalent or sight of 'their (16 + 6)'</p>																										
$\frac{22}{50}$ or equivalent	A1	CAO																										
		(7)																										
16. $BG = DF$ (pentagon regular, given)	B1																											
Angle AGB = angle EFD (exterior angles of regular pentagon)	B1																											
Angle ABG = angle EDF (exterior angles of regular pentagon)	B1																											
All necessary reasons given	E1	Allow exterior angles of a regular pentagon to be stated once only.																										
(Triangles are congruent) ASA	B1	Dependent on all previous marks having been awarded.																										
	(5)																											
17.(a)																												
$(\text{length} =) \frac{22}{1+2\sqrt{3}}$	M1																											
$\frac{22}{1+2\sqrt{3}} \times \frac{1-2\sqrt{3}}{1-2\sqrt{3}}$	M1																											
$\frac{22-44\sqrt{3}}{1-4(3)}$	M1																											
$-2+4\sqrt{3}$	A1																											

17.(b) $x = (-2 + 4\sqrt{3})^2 + (1 + 2\sqrt{3})^2$ $4 - 8\sqrt{3} - 8\sqrt{3} + 16(3) +$ $1 + 2\sqrt{3} + 2\sqrt{3} + 4(3) = 65 - 12\sqrt{3}$	M1 A1 (6)	FT 'their $-2 + 4\sqrt{3}$ ' for M1 only NB Answer is given
18.(a) Correct explanation. e.g. $\frac{8}{6} = \frac{4}{3}$ and $6^2 + 8^2 = 10^2$ or equivalent or draws a 3,4,5 triangle and a 6,8,10 triangle and states they are similar	B2	Must use both the gradient and the length of OA . B1 for a correct partial explanation e.g. $\frac{8}{6} = \frac{4}{3}$ or $6^2 + 8^2 = 10^2$ or equivalent or draws a 3,4,5 triangle and a 6,8,10 triangle
18.(b) (Gradient of tangent =) $\frac{-1}{\frac{4}{3}}$ $8 = -\frac{3}{4} \times 6 + c$ $y = -\frac{3}{4}x + \frac{25}{2}$ or equivalent $0 = -\frac{3}{4}x + \frac{25}{2}$ $\left(\frac{50}{3}, 0\right)$ or equivalent	M1 m1 A1 M1 A1	FT 'their $-\frac{3}{4}$ ' CAO FT their equation of AB providing the gradient is negative. Allow a final answer of $x = \frac{50}{3}$
		<p>Alternative method 1:</p> Identifies similar triangles OAX and OBA , seen or implied M1 $\frac{10}{6} = \frac{OB}{10}$, seen or implied M1 $OB = 10 \times \frac{10}{6}$ M1 $OB = \frac{100}{6}$ or equivalent CAO A1 $B\left(\frac{50}{3}, 0\right)$ or equivalent A1 <p>Alternative method 2:</p> Identifies similar triangles OXA and AXB , seen or implied M1 $\frac{BX}{8} = \frac{8}{6}$, seen or implied M1 $OB = 8 \times \frac{8}{6} + 6$ M1 $OB = \frac{100}{6}$ or equivalent CAO A1 $B\left(\frac{50}{3}, 0\right)$ or equivalent A1

Alternative method 3:

$$\tan AOB = \frac{4}{3}$$

M1

$$\cos AOB = \frac{3}{5}$$

M1

$$\left(\cos AOB = \frac{OA}{OB} = \right) \frac{10}{OB} = \frac{3}{5}$$

M1

$$OB = \frac{50}{3} \text{ or equivalent CAO}$$

A1

$$B\left(\frac{50}{3}, 0\right) \text{ or equivalent}$$

A1

Alternative method 4:

Identifies similar triangles OAX and OBA , seen or implied

M1

$$AB = 10 \times \frac{8}{6}, \text{ seen or implied}$$

M1

$$OB = \sqrt{10^2 + \left(\frac{40}{3}\right)^2}$$

M1

$$OB = \frac{50}{3} \text{ or equivalent CAO}$$

A1

$$B\left(\frac{50}{3}, 0\right) \text{ or equivalent}$$

A1

Alternative method 5:

$$(\text{Gradient } AB =) \frac{-1}{4/3}, \text{ seen or implied}$$

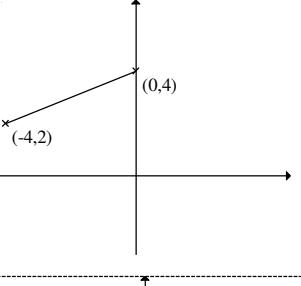
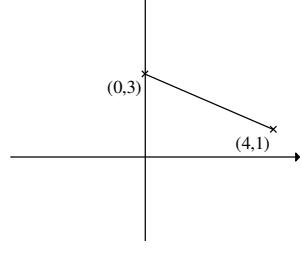
M1

$$-\frac{3}{4} = -\frac{8}{BX}, \text{ seen or implied}$$

M1

$$OB = 8 \times \frac{4}{3} + 6$$

M1



$$OB = \frac{100}{6} \text{ or equivalent CAO}$$

A1

$$B\left(\frac{50}{3}, 0\right) \text{ or equivalent}$$

A1

(7)

<p>19.(a)</p> <p>Translation through $\begin{pmatrix} 0 \\ k \end{pmatrix}$ where $k > 0$</p> <p>Correct coordinates seen or scale marked</p>	<p>B1</p> <p>B1</p>	
<p>19.(b)</p> <p>Reflection in y-axis</p> <p>Correct coordinates seen or scale marked</p>	<p>B1</p> <p>B1</p>	
<p>(4)</p>		
<p>20.(a)(i)</p> <p>120</p>	<p>B2</p>	<p>B1 for $5 \times 4 \times 3 \times 2$ ($\times 1$) or $5!$ or equivalent</p>
<p>20.(a)(ii)</p> <p>$\frac{2}{5}$ or equivalent</p>	<p>B1</p>	
<p>20.(b)</p> <p>2160</p>	<p>B2</p>	<p>FT $18 \times$ 'their 120'</p> <p>B1 for $6 \times 5 \times 4 \times 3 \times 2 \times 3$ or $\frac{3}{7} \times 7!$ or equivalent</p>
<p>(5)</p>		
<p>21.(a)</p> <p>$f^{-1}(x) = \frac{x-2}{5}$ or equivalent</p>	<p>B2</p>	<p>Award B1 for $x = \frac{y-2}{5}$ or equivalent unless x and y interchanged later or</p> <p>SC1 for y or $f^{-1}(x) = \frac{x+2}{5}$ or equivalent</p>
<p>$\frac{x-2}{5} = 10$</p> <p>$x = 52$</p>	<p>M1</p> <p>A1</p>	
<p><u>Alternative method:</u></p> <p>$f^{-1}(x) = 10$ means $x = f(10)$</p> <p>$f(10) = 5(10) + 2$</p> <p>$x = 52$</p>		<p>B2</p> <p>M1</p> <p>A1</p>

<p>21.(b)(i)</p> <p>$gf(x) = g(5x+2)$ or $gf(x) = (5x+2)^3$ or $gf(x) = (f(x))^3$</p> <p>$(5x+2)(5x+2)^2 = (5x+2)(25x^2 + 20x + 4)$</p> <p>Convincing correct completion to given answer $125x^3 + 150x^2 + 60x + 8$</p>	<p>B1</p> <p>M1</p> <p>A1</p>	<p>Correct order of composition seen or implied.</p> <p>Seen or implied. Allow $(5x+2)^2 = 25x^2 + 20x + 4$ if $(5x+2)^3$ attempted</p> <p>NB Answer is given</p>
<p>21.(b)(ii)</p> <p>-27</p>	<p>B1</p> <p>(8)</p>	
<p>22.(a)</p> <p>$(x-3)^2 + 10$ or $a = -3, b = 10$</p>	<p>B3</p>	<p>B2 for sight of $\left(x - \frac{6}{2}\right)^2 - 3^2$ or B1 for sight of $\left(x - \frac{6}{2}\right)^2 \pm \dots$ Ignore '= 0' if seen.</p>
<p>22.(b)</p> <p>(3, 21)</p>	<p>B2</p> <p>(5)</p>	<p>FT – 'their a' and 11 + 'their b' B1 for each coordinate.</p>